n8nflow.net logo

Loop Over Items — Beginner Example

by Robert BreenUpdated: Last update 2 months agoSource: n8n.io
Loading workflow viewer...

Getting Started

This workflow introduces beginners to one of the most fundamental concepts in n8n: looping over items. Using a simple use case—generating LinkedIn captions for content ideas—it demonstrates how to split a dataset into individual items, process them with AI, and collect the output for review or export.


✅ Key Features

  • 🧪 Create Dummy Data : Simulate a small dataset of content ideas.
  • 🔁 Loop Over Items : Process each row independently using the SplitInBatches node.
  • 🧠 AI Caption Creation : Automatically generate LinkedIn captions using OpenAI.
  • 🧰 Tool Integration : Enhance AI output with creativity-injection tools.
  • 🧾 Final Output Set : Collect the original idea and generated caption.

🧰 What You’ll Need

  • ✅ An OpenAI API key
  • ✅ The LangChain nodes enabled in your n8n instance
  • ✅ Basic knowledge of how to trigger and run workflows in n8n

🔧 Step-by-Step Setup

1️⃣ Run Workflow

  • Node : Manual Trigger (Run Workflow)
  • Purpose : Manually start the workflow for testing or learning.

2️⃣ Create Random Data

  • Node : Create Random Data (Code)

  • What it does : Simulates incoming data with multiple content ideas.

  • Code :

    return [ { json: { row_number: 2, id: 1, Date: '2025-07-30', idea: 'n8n rises to the top', caption: '', complete: '' } }, { json: { row_number: 3, id: 2, Date: '2025-07-31', idea: 'n8n nodes', caption: '', complete: '' } }, { json: { row_number: 4, id: 3, Date: '2025-08-01', idea: 'n8n use cases for marketing', caption: '', complete: '' } } ];


3️⃣ Loop Over Items

  • Node : Loop Over Items (SplitInBatches)
  • Purpose : Sends one record at a time to the next node.
  • Why It Matters : Loops in n8n are created using this node when you want to iterate over multiple items.

4️⃣ Create Captions with AI

  • Node : Create Captions (LangChain Agent)

  • Prompt :

    idea: {{ $json.idea }}

  • System Message :

    You are a helpful assistant creating captions for a LinkedIn post. Please create a LinkedIn caption for the idea.

  • Model : GPT-4o Mini or GPT-3.5

  • Credentials Required :

    • OpenAI Credential
      • Go to: OpenAI API Keys
      • Create a key and add it in n8n under credentials as “OpenAi account”

5️⃣ Inject Creativity (Optional)

  • Node : Tool: Inject Creativity (LangChain Tool)
  • Purpose : Demonstrates optional LangChain tools that can enhance or manipulate input/output.
  • Why It’s Cool : A great way to show chaining tools to AI agents.

6️⃣ Output Table

  • Node : Output Table (Set)
  • Purpose : Combines original ideas and generated captions into final structure.
  • Fields :
    • idea: ={{ $('Create Random Data').item.json.idea }}
    • output: ={{ $json.output }}

💡 Educational Value

This workflow demonstrates:

  • Creating dynamic inputs with the Code node
  • Using SplitInBatches to simulate looping
  • Sending dynamic prompts to an AI model
  • Using Set to structure the output data

Beginners will understand how item-level processing works in n8n and how powerful looping combined with AI can be.


📬 Need Help or Want to Customize This?

Robert Breen
Automation Consultant | AI Workflow Designer | n8n Expert
📧 [email protected]
🌐 ynteractive.com
🔗 LinkedIn


🏷️ Tags

n8n loops OpenAI LangChain workflow training beginner LinkedIn automation caption generator